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Abstract: A well-known conjecture by Lovász and Plummer from the 1970s assert-
ing that a bridgeless cubic graph has exponentially many perfect matchings was solved
in the affirmative by Esperet et al. (Adv. Math. 2011). On the other hand, Chud-
novsky and Seymour (Combinatorica 2012) proved the conjecture for the special case of
cubic planar graphs. In our work we consider random bridgeless cubic planar graphs
with the uniform distribution on graphs with n vertices. Under this model we show that
the expected number of perfect matchings in labeled bridgeless cubic planar graphs is
asymptotically cγn, where c > 0 and γ ∼ 1.14196 is an explicit algebraic number. We
also compute the expected number of perfect matchings in (non necessarily bridgeless)
cubic planar graphs and provide lower bounds for unlabeled graphs. Our starting point is
a correspondence between counting perfect matchings in rooted cubic planar maps and
the partition function of the Ising model in rooted triangulations.

1 Introduction

In the 1970s Lovász and Plummer conjectured that a bridgeless cubic graph has ex-
ponentially many perfect matchings. The conjecture was solved in the affirmative by
Esperet, Kardoš, King, Král and Norine [5], and independently for cubic planar graphs

by Chudnovsky and Seymour [4]. The lower bound from [5] is 2n/3656 ≈ 1.0002n. It is
natural to expect that a typical bridgeless cubic graph has more perfect matchings than
those guaranteed by this lower bound.

Our main result gives estimates on the expected number of perfect matchings, both
for labeled and unlabeled cubic planar graphs. The model we consider is the uniform
distribution on graphs with n vertices.

Theorem 1 Let Xn be the number of perfect matchings in a random (with the uniform
distribution) labeled bridgeless cubic planar graph with 2n vertices. Then

E(Xn) ∼ bγn,
where b > 0 is a constant and γ ≈ 1.14196 is an explicit algebraic number. If Xu

n is the
same random variable defined on unlabeled bridgeless cubic planar graphs, then

E(Xu
n) ≥ 1.119n.
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2 The expected number of perfect matchings in cubic planar graphs

We obtain a similar result for general, non necessarily bridgeless, cubic planar graphs.

Theorem 2 Let Yn be the number of perfect matchings in a random (with the uniform
distribution) labeled cubic planar graph with 2n vertices. Then

E(Yn) ∼ cδn,
where c > 0 is a constant and δ ≈ 1.14157 is an explicit algebraic number. If Y u

n is the
same random variable defined on unlabeled cubic planar graphs, then

E(Y u
n ) ≥ 1.109n.

2 Preliminaries

A map is a planar multigraph with a specific embedding in the plane. All maps considered
in this paper are rooted, that is, an edge is marked and given a direction. A map is
simple if it has no loops or multiple edges. It is 2-connected if it has no loops or cut
vertices, and 3-connected if it has no 2-cuts or multiple edges. A map is cubic if it is
3-regular, and it is a triangulation if every face has degree 3. By duality, cubic maps
are in bijection with triangulations. And since duality preserves 2- and 3-connectivity,
k-connected cubic maps are in bijection with k-connected triangulations, for k = 2, 3.
Notice that a general triangulation can have loops and multiple edges, and that a simple
triangulation is necessarily 3-connected. The size of a cubic map is defined as the number
of faces minus 2, a convention that simplifies the algebraic computations.

We need the generating function of 3-connected cubic maps, which is related to the
generating function T (z) of simple triangulations. The latter was obtained by Tutte [10]
and is an algebraic function given by

(1) T (z) = U(z) (1− 2U(z)) ,

where z = U(z)(1−U(z))3, and z marks the number of vertices minus two. As shown in
[10], the unique singularity of T , coming from a branch point, is located at τ = 27/256
and T (τ) = 1/8. The singular expansion of T (z) near τ is

T (z) =
1

8
− 3

16
Z2 +

√
6

24
Z3 +O(Z4),

where Z =
√

1− z/τ . Notice that τ is a finite singularity, since T (τ) = 1/8 <∞.
The generating function M3(z) of 3-connected cubic maps, where z marks the number

of faces minus 2 is equal to

(2) M3(z) = T (z)− z.
This follows directly from the duality between cubic maps and triangulations, which
exchanges vertices and faces.

Adapting directly the proof from [8] for cubic planar graphs, one finds that cubic
maps are partitioned into five subclasses, as defined below, and where st denotes the
root edge of a cubic map M .

• L (Loop). The root edge is a loop.
• I (Isthmus). The root edge is an isthmus (an alternative name for a bridge).
• S (Series). M − st is connected but not 2-connected.
• P (Parallel). M − st is 2-connected but M − {s, t} is not connected.
• H (polyHedral). M is obtained from a 3-connected cubic map by possibly

replacing each non-root edge with a cubic map whose root edge is not an isthmus.
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3 The Ising model on rooted triangulations and perfect match-
ings in cubic maps

Given a graph G, its Ising partition function is defined as follows. Given a 2-coloring,
not necessarily proper, c : V (T )→ {1, 2} of the vertices of G, let m(c) be the number of
monochromatic edges in the coloring. Then define

pG(u) =
∑

c : V (T )→{1,2}

um(c).

The same definition applies for rooted maps, using the fact that in a rooted map the
vertices are distinguishable.

Suppose G is a triangulation with 2n faces. Since in a 2-coloring every face of T has
at least one monochromatic edge, the number of monochromatic edges at least n. The
lower bound can be achieved taking the dual edge-set of a perfect matching in a cubic
map. We show next that perfect matchings of a cubic map M with 2n vertices are in
bijection with 2-colorings of the dual triangulation M∗ with exactly n monochromatic
edges, in which the color of the root vertex is fixed.

Lemma 3 Let M be a rooted cubic map and T = M∗ its dual triangulation. There is a
bijection between perfect matchings of M and 2-colorings of T with exactly n monochro-
matic edges in which the color of the root vertex of T is fixed.

The generation function of the Ising partition of triangulations is defined as

P (z, u) =
∑
T∈T

pT (u)zn,

where T is the class of rooted triangulations and the variable z marks the number of
vertices minus 2. An expression for P was obtained by Bernardi and Bousquet-Mélou [2]
in the wider context of counting q-colorings of maps with respect to monochromatic
edges, which is equivalent to computing the q-Potts partition function. It is the algebraic
function Q3(2, ν, t) in [2, Theorem 23]. Here the parameter 2 refers to the number of
colors, t marks edges and ν marks monochromatic edges. Extracting the coefficient
[νn]Q3(2, ν, t) we obtain a generating function which is equivalent to the generating
function M(z) of rooted cubic maps with a distinguished perfect matching, where z
marks faces minus 2. After a simple algebraic manipulation we obtain:

Lemma 4 The generating function M = M(z) counting rooted cubic maps with a dis-
tinguished perfect matching satisfies the quadratic equation

(3) 72M2z2 +
(
216 z2 − 36 z + 1

)
M + 162 z2 − 6 z = 0.

where the variable z marks the number of faces minus two.

The former quadratic equation has a non-negative solution

M(z) =
−1 + 36z − 216z2 + (1− 24z)3/2

144z2
.

Expanding the binomial series one obtains the closed formula

(4) [zn]M(z) = 3 · 6n
(

2n
n

)
(n+ 2)(n+ 1)

,

a formula which can be proved combinatorially [9].
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4 From the Ising model to 3-connected cubic graphs

We use the decomposition of cubic graphs as in [3] and [8], and the following observation.
We say that a class N of rooted maps is closed under rerooting if whenever a map N is
in N , so is any map obtained from N by forgetting the root edge and choosing a different
one.

Lemma 5 Let N be a class of cubic maps closed under rerooting with a distinguished
perfect matching. Let N1 be the maps in N whose root edge belongs to the perfect match-
ing, and N0 those whose root edge does not belong to the perfect matching. Let Ni(z) be
the associated generating functions. Then N0(z) = 2N1(z).

The previous lemma applies in particular to the class of all cubic maps and to the
class of 3-connected cubic maps.

Lemma 6 The following system of equations holds and has a unique solution in power
series with non-negative coefficients.
(5)
M0(z) = D0(z), M1(z) = D1(z) + I(z),
D0(z) = L(z) + S0(z) + P0(z) +H0(z), D1(z) = S1(z) + P1(z) +H1(z)

I(z) = L(z)2

4z , L(z) = 2z(1 +D0(z))
S1(z) = D1(z)(D1(z)− S1(z)), S0(z) = D0(z)(D0(z)− S0(z))
P1(z) = z(1 +D0(z))2, P0(z) = 2z(1 +D0(z))(1 +D1(z)),

H1(z) =
T1(z(1 +D1(z))(1 +D0(z))2)

1 +D1
, H0(z) =

T0(z(1 +D1(z))(1 +D0(z))2)

1 +D0
.

We sketch the justification of the former equations, starting with an observation.
An edge e is replaced with a map whose root edge is in a perfect matching if and only
if the two new edges resulting from the subdivision and replacement of e belong to the
resulting perfect matching. The equation for I(z) is because an isthmus map is composed
of two loop maps; division by 4 takes into account the possible rootings of the two loops.
The situation for L(z), Si(z), Pi(z) and H1(z) are rather straightforward. The equations
for Hi can be detailed as follows: in a cubic map with 2n vertices there are n edges
in a perfect matching and 2n not in it, hence the term (1 + D1(z))(1 + D0(z))2 in the
substitution.

By elimination we obtain T1(z) and T0(z) = 2T1(z). The equation defining T1 is

T 6
1 + (24 z + 16)T 5

1 +
(
60 z2 + 92 z + 25

)
T 4

1 +
(
80 z3 + 208 z2 + 96 z + 19

)
T 3

1

+
(
60 z4 + 232 z3 + 150 z2 + 12 z + 7

)
T 2

1 +
(
24 z5 + 128 z4 + 112 z3 + z2 − 16 z + 1

)
T1

+4 z6 + 28 z5 + 33 z4 + 12 z3 − z2 = 0.

5 From 3-connected cubic maps to cubic planar graphs

A cubic network is a connected cubic planar multigraph G with an ordered pair of
adjacent vertices (s, t) such that the graph obtained by removing one of the edges between
s and t is connected and simple. We notice that st can be a simple edge, a loop or be
part of a double edge, but cannot be an isthmus. The oriented edge st is called the root
of the network, and s, t are called the poles. Replacement in networks is defined as for
maps. We let D be the class of cubic networks. The classes I, L, S, P and H have
the same meaning as for maps, and so do the subindices 0 and 1. We let C be the class
of connected cubic planar graphs (always with a distinguished perfect matching), with
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associated generating function C(x), and C•(x) = xC ′(x) be the generating functions of
those graphs rooted at a vertex. We also let G(x) be the generating function of arbitrary
(non-necessarily connected) cubic planar graphs.

Whitney’s theorem claims that a 3-connected planar graph has exactly two embed-
dings in the sphere up to homeomorphism. Thus counting 3-connected planar graphs
rooted at a directed edge amounts to counting 3-connected maps, up to a factor 2. Below
we use the notation Ti(x) for the exponential generating functions of 3-connected cubic
planar graphs rooted at a directed edge, similarly to maps.

Lemma 7 The following system of equations holds and has a unique solution in power
series with non-negative coefficients.

(6)

D0 = L+ S0 + P0 +H0, D1 = S1 + P1 +H1

I = L2

x2 , L = x2

2 (D0 − L)
S1 = D1(D1 − S1, 6, S0 = D0(D0 − S0

P1 = x2D0 + x2

2 D
2
0, P0 = x2(D0 +D1) + x2D0D1

H1 =
T1(x2(1 +D1)(1 +D2

0))

2(1 +D1)
, H0 =

T0(x2(1 +D1)(1 +D2
0))

2(1 +D0)
.

Moreover, we have

3C• = I +D0 +D1 − L− L2 − x2(D0 +D1)− x2D.

6 Proofs of the main results

Proof of Theorem 2. We first need to find the dominant singularity of C(x), which is
the same as that of D0(x), D1(x) and then D(x). It is obtained by first computing the
minimal polynomial for D(x) and then its discriminant ∆(x). After discarding several
factors of ∆(x) for combinatorial reasons (as in [8]), the relevant factor of ∆(x) turns
out to be

904x8 + 7232x6 − 11833x4 − 45362x2 + 3616,

whose smallest positive root is equal to σ ≈ 0.27964. After routinely checking the
conditions of [8, Lemma 15], we conclude that σ is the only positive dominant singularity
and that D(x) admits an expansion near σ of the form

D(x) = d0 + d2X
2 + d3X

3 +O(X4), X =
√

1− x/σ.
And the same hold for D0(x) and D1(x). But also for L(x) and I(x), using their def-
initions given in terms of D0(x) in Lemma 6. There is a second singularity −σ with a
similar singular expansion and, as explained in [8], the contributions of ±σ are added.

From there, and using again Lemma 6 we can compute the singular expansion of
C•(x) = xC ′(x), and by integration, that of C(x). For arbitrary cubic planar graphs,

we use the exponential formula G(x) = eC(x), which encodes the fact that a graph is an
unordered set of connected graphs. The transfer theorem finally gives

(7) Gn = [xn]G(x) ≈ c1n
−7/2σ−nn!.

To obtain the expected value of Xn we have to divide Gn by the number gn of labeled
cubic planar graphs, which as shown in [3, 8] is asymptotically gn ∼ c0n

−7/2ρ−nn!, where
c0 > 0 and ρ ≈ 0.31923 is the smallest positive root of

729x12 + 17496x10 + 148716x8 + 513216x6 − 7293760x4 + 279936x2 + 46656 = 0.
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And we obtain the claimed result by setting c = c1/c0 and δ = ρ/σ. Furthermore, since
σ and ρ are algebraic numbers, so is δ (actually of degree 48).

For the second part of the statement we argue as follows. Since a graph with n
vertices has at most n! automorphisms, the number of unlabeled graphs in a class is
at least the number of labeled graphs divided by n!. It follows that the number Un of
unlabeled cubic planar graphs with a distinguished perfect matching is at least Gn/n!,
where Gn is given in (7).

No precise estimate is known for the number un of unlabeled cubic planar graphs, but
it can be upper bounded by the number Cn of simple rooted cubic planar maps, because
a planar graph has at least one embedding in the plane. These maps have already been
counted in [6] and the estimate Cn ∼ cs · n−5/2α−n, where α ∼ 0.3102, follows from [6,

Corollary 3.2]. The relation between α and the value x0 given in [6] is α = x
1/2
0 ; this

is due to the fact that we count cubic maps according to faces whereas in [6] they are
counted according to vertices, and a map with n+ 2 faces has 2n vertices. Disregarding
subexponential terms, we have Un ≥ σ−n and un ≤ α−n. The last result holds as claimed
since α/σ ≈ 1.109. �

Proof of Theorem 1. The proof follows the same scheme as that of Theorem 2 and
is omitted. One just needs to adapt the system (6) to bridgeless cubic planar graphs by
removing the generating functions I(z) and L(z), and follow a similar procedure.

7 Concluding remarks

A natural open question is to prove some kind of concentration result for the number
of perfect matchings in cubic planar graphs. But already computing the variance seems
out of reach with our techniques, since for computing the second moment we would need
to consider maps or graphs with a pair of distinguished perfect matchings, and this does
not seem feasible using the connection with the Ising model on triangulations.
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