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1 Quantum projective planes

Communicated by Simeon Ball.

Keywords Latine squares, projective geometry

1.1 Background

A quantum latin square of order n is a set {|ϕij⟩ | i, j ∈ {1, . . . , n}} of
n2 states in Cn with the property that for all i ∈ {1, . . . , n}, {|ϕij⟩ | j ∈
{1, . . . , n}} is an orthonormal basis of Cn and for all j ∈ {1, . . . , n},
{|ϕij⟩ | i ∈ {1, . . . , n}} is an orthonormal basis of Cn. Two quantum latin
squares are orthogonal if furthermore {|ϕij⟩⊗ |ψij⟩ | i, j ∈ {1, . . . , n}} is
an orthonormal basis of Cn ⊗ Cn.

We define a quantum projective plane of order n as a set of n2 + n+1

states {|ℓi⟩ | i ∈ {1, . . . , n2 + n + 1}} of Cn2+n+1 with the property
that ⟨ℓj |ℓi⟩ = 1+ nδij . Observe that we can make a quantum projective
plane of n from a classical projective plane of order n by mapping a line
{p1, . . . , pn+1} ⊂ {1, . . . , n2 + n+ 1} to the state |p1⟩+ · · ·+ |pn+1⟩ .

We can also make a quantum projective plane of n directly from a set
of n−1 mutually orthogonal latin squares in the following way. Labelling
the cell (i, j) with the ket |(i− 1)n+ j⟩ we can make lines in a quantum
projective plane considering cells where the element j ∈ {1, . . . , n} falls
in the latin square. In this way each latin square gives us n lines where we
add a state

∣∣n2 + r
〉

if we are using the r-th latin square. The vertical and
horizontal parallel lines give 2n additional lines and the line at infinity
will be the state |ℓn2+n+1⟩ =

∣∣n2 + 1
〉
+ · · ·+

∣∣n2 + n+ 1
〉
.

Example 1. Consider the classical orthogonal latin squares

1 2 3
2 3 1
3 1 2

1 2 3
3 1 2
2 3 1
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We can make two orthogonal quantum latin squares by mapping j to the
state |j⟩,

|1⟩ |2⟩ |3⟩
|2⟩ |3⟩ |1⟩
|3⟩ |1⟩ |2⟩

|1⟩ |2⟩ |3⟩
|3⟩ |1⟩ |2⟩
|2⟩ |3⟩ |1⟩

Following the recipe above we get the 13 lines defining a quantum projec-
tive plane to be

|ℓ1⟩ = |1⟩+ |6⟩+ |8⟩+ |10⟩ , |ℓ2⟩ = |2⟩+ |4⟩+ |9⟩+ |10⟩ ,

|ℓ3⟩ = |3⟩+ |5⟩+ |7⟩+ |10⟩ , |ℓ4⟩ = |1⟩+ |5⟩+ |9⟩+ |11⟩ ,
|ℓ5⟩ = |2⟩+ |6⟩+ |7⟩+ |11⟩ , |ℓ6⟩ = |3⟩+ |4⟩+ |8⟩+ |11⟩ ,
|ℓ7⟩ = |1⟩+ |4⟩+ |4⟩+ |12⟩ , |ℓ8⟩ = |2⟩+ |5⟩+ |8⟩+ |12⟩ ,
|ℓ9⟩ = |3⟩+ |6⟩+ |9⟩+ |12⟩ , |ℓ10⟩ = |1⟩+ |2⟩+ |3⟩+ |13⟩ ,
|ℓ11⟩ = |4⟩+ |5⟩+ |6⟩+ |13⟩ , |ℓ12⟩ = |7⟩+ |8⟩+ |9⟩+ |13⟩ ,

|ℓ13⟩ = |10⟩+ |11⟩+ |12⟩+ |13⟩ .

Example 2. Consider the following quantum latin square of order 4.

|1⟩ |2⟩ |3⟩ |4⟩
1√
2
(|2⟩ − |3⟩) 1√

5
(i |1⟩+ 2 |4⟩) 1√

5
(2 |1⟩+ i |4⟩) 1√

2
(|2⟩+ |3⟩)

1√
2
(|2⟩+ |3⟩) 1√

5
(2 |1⟩+ i |4⟩) 1√

5
(i |1⟩+ 2 |4⟩) 1√

2
(|2⟩ − |3⟩)

|4⟩ |3⟩ |2⟩ |1⟩

See [1] and [2] for more background.

1.2 Open problems
Problem 1. Now, the question arises if we can make a quantum projec-
tive plane from a set of n− 1 mutually orthogonal quantum latin squares
of n.
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2 Fast geometric construction on a
budget

Communicated by Alberto Espuny Díaz.

Keywords Random geometric graphs, online construction, budget

2.1 Background

Let n ∈ N and N :=
(
n
2

)
, and consider n mutually independent ran-

dom variables X1, . . . , Xn ∼ U([0, 1]2), that is, n points chosen indepen-
dently and uniformly at random from the unit square. For each pair
{i, j} = e ∈

(
[n]
2

)
, define the random variable ℓe := ∥Xi − Xj∥, where

∥·∥ denotes the Euclidean norm. The random outcomes of the variables
X1, . . . , Xn result in a (random) ordering e1, . . . , eN of all the pairs in(
[n]
2

)
, where we choose an ordering such that ℓe1 ≤ . . . ≤ ℓeN (note

that this ordering is uniquely determined with probability 1). Now one
can define a sequence of nested graphs G0 ⊆ G1 ⊆ . . . ⊆ GN , where
Gi = ([n], {ej : j ∈ [i]}). This sequence of graphs is known as the geo-
metric random graph process, and many of its asymptotic properties have
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been very well studied. We say that an event holds asymptotically almost
surely (a.a.s.) if the probability that it holds tends to 1 as n→ ∞.

Now consider the following “game”. A player, called Builder, wants to
construct a graph on [n]. She receives edges one by one and, each time
she receives an edge, she must choose to either “purchase” the edge and
add it to the graph, or let it go (and, in this case, it is gone forever).
Builder must make her choice based solely on the information she knows
so far, in terms of which edges have been offered to her; she does not know
the full order in which the edges will arrive. But she does know what
“distribution” the edges respond to. Here, we want to consider the case
in which the edges arrive in the order provided by the geometric random
graph process (but, crucially, Builder does not know the positions of the
points!). Note that the choices made by Builder result in a sequence of
nested graphs B0 ⊆ B1 ⊆ . . . ⊆ BN such that Bi ⊆ Gi for all i.

The goal of Builder is to construct a graph which satisfies some de-
sired (non-trivial, monotone) property P (e.g., being Hamiltonian). This
can be achieved in many ways. For instance, she could choose to pur-
chase every edge, as they arrive, until the graph satisfies the desired
property; this will result simply in reproducing the random geometric
graph process. The catch is that Builder has a limited budget b for the
number of edges that she can purchase in total, that is, she must main-
tain |E(Bi)| ≤ b at all times (and recall she cannot remove edges once
purchased!).

Let us use Hamiltonicity as an example: if Builder is allowed a budget
of at least (1/2 + ϵ)n log n edges, then she can simply run the random
geometric graph process purchasing all edges and, by the time she cannot
purchase any more edges, a.a.s. her graph will be Hamiltonian (see [2]).
If she is allowed a budget of exactly n edges, then one option is to
simply pick a Hamilton cycle H beforehand and then run the process,
purchasing only those edges that belong to H, but this takes a very long
time. In general, given a budget, for how long does Builder have to run
the process until she can construct a graph containing a Hamilton cycle
with that budget?

2.2 Open problems

For any pair of positive integers t and b, a (t, b)-strategy for Builder is a
(possibly random) function which, for each i ∈ [t], given the history of the
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process so far (that is, the sequence G0 ⊆ . . . ⊆ Gi−1), the graph Bi−1,
and presented with a new edge at time i, decides whether to purchase
the edge, under the limitation that |E(Bi)| ≤ b.

Problem 2. For which pairs (t, b) does Builder have a (t, b)-strategy
such that a.a.s. Bt ∈ P?

The aim with this problem would be to pick one (or a few) simple
properties and analyse this question for them. Some examples could be
Hamiltonicity, perfect matchings or connectivity, but also the contain-
ment of fixed subgraphs, such as triangles, trees, etc.

This question is motivated by an analogous question when the edges
presented to Builder are picked uniformly at random among the missing
ones. This model was proposed by Frieze, Krivelevich and Michaeli [3]
and subsequently studied by other authors [1, 5, 4]; with this problem,
we propose the study of a geometric variant where, by virtue of knowing
that the edges are given by the random geometric graph process, Builder
may be able to come up with different strategies.
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3 Connectivity in hypergraphs

Communicated by Richard Lang.

Keywords hypergraph, connectivity, minimum degree

3.1 Background
The following problem is motivated by recent developments in extremal
simplicial topology, in particular the work of Georgakopoulos, Hasle-
grave, Montgomery and Narayanan [2].

A k-uniform hypergraph G consists of a set of vertices V (G) and a set
of edges E(G), where each edge is a set of k vertices. Let G∗ be the
line graph of G, which is the graph on vertex set E(G) with an edge ef
whenever |e ∩ f | ≤ k − 1. A subgraph of G without isolated vertices is
said to be tightly connected if its edges induce a connected subgraph in
G∗.

3.2 Open problems
Problem 3. Let G be a 3-uniform hypergraph on n vertices such that
every vertex is on more than 4

9

(
n
2

)
edges. Show that G contains a tightly

connected subgraph on n vertices.

A few remarks.

• To see that the degree condition cannot be lowered (significantly),
consider the 3-uniform hypergraphG whose vertices are partitioned
by sets X, Y and Z each of size n/3 and whose edges are composed
of all edges of typeXXY , Y Y Z and ZZX as well as all edges inside
each of X, Y and Z. It is not hard to see that G does not have a
vertex-spanning tightly connected subgraph. (In fact, each tightly
connected subgraph spans at most two of the parts X, Y and Z.)
On the other hand, a simple calculation shows that every vertex of
G is on at least (4/9− o(1))

(
n
2

)
edges.

• It is known that the problem can be solved, if the lower bound
on the edges is replaced by 5

9

(
n
2

)
. This follows from the work of
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Cooley and Mycroft [1, Lemma 3.2], who prove a result about 2-
graphs that can be applied to the 2-uniform graphs induced by the
edges incident to each vertex (so called link graphs).

• To get a feeling for the problem, it might be instructive to first
solve it under the (stronger) assumption that every pair of vertices
is on more than n/3 edges. (This is essentially sharp due to the
above construction.)

Bibliography

[1] O. Cooley and R. Mycroft. “The minimum vertex degree for an
almost-spanning tight cycle in a 3-uniform hypergraph”. In: Discrete
Math. 340.6 (2017), pp. 1172–1179.
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4 Dynamic interpolation between copies
of a graph H in a dense host graph

Communicated by Lyuben Lichev.

Keywords connectivity thresholds, random walks

4.1 Background
A main topic in extremal combinatorics is related to finding minimum
degree thresholds guaranteeing the existence of certain substructures in a
sufficiently dense host graph. One prominent example is Dirac’s theorem,
which says that every graph on n vertices and minimum degree at least
n/2 contains a Hamilton cycle. Dirac’s theorem has seen a number of
generalisations, most notably for powers of cycles and for bounded-degree
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graphs on n vertices and bandwidth o(n) (the latter breakthrough of
Böttcher, Schacht and Taraz confirmed a corresponding conjecture of
Bollobás and Komlós).

4.2 Open problems
This project takes a more dynamic point of view on the above problem.
More precisely, fix an n-vertex graph H of bounded maximum degree
and an n-vertex host graph G above the minimum degree threshold for
containment of H. Define H as the family of copies of H in G and
define the relation H1 ∼ H2 between two copies H1, H2 ∈ H if they can
be obtained from each other by exchanging the positions of a pair of
vertices. This allows us to see the family H as a graph.

Problem 4. What is the minimum degree threshold for connectivity of
the graph H if H is a Hamilton cycle? What about more general graphs
of bounded maximum degree and bandwidth o(n)?

Once Problem 4 is answered, a natural question is how far two copies
of H could be in H.
Problem 5. What can be said about the diameter of H over the connec-
tivity threshold?

The connectivity of H is desirable for at least two reasons. First,
it allows to interpolate between the copies of H in a “continuous” way
via some local operation. Such interpolation is often useful in problems
dealing with edge-colourings or edge-weights where a single vertex ex-
change only barely modifies the characteristics of the observed copy of
H. Second, upon some additional regularity constraints for the degrees
and the co-degrees of the graph G, it is believeable that a fast sampling
algorithm can be derived from the simple random walk on H.

Problem 6. Upon determination of the threshold in Problem 4, what is
the mixing time of the simple random walk on H? When does such a ran-
dom walk provide us with an algorithm for sampling an (approximately)
uniformly random copy of H.

Of course, an answer to Problem 5 naturally gives a lower bound on
the mixing time in Problem 6.

Furthermore, it is natural to believe that binomial random graphs
allow fast interpolation between two copies of H even when they contain
o(n2) edges.
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Problem 7. Is there a sharp threshold pc for connectivity of the auxiliary
graph H in G(n, p)? When p ≥ (1+ ε)pc, how fast does the random walk
on H mix? For which values of p does this provide a fast algorithm for
sampling an (approximately) uniform copy of H in G(n, p)?

5 Random friend trees
Communicated by Dieter Mitsche.

Keywords random trees

5.1 Background
The following random recursive tree model was considered by Addario-
Berry, Briend, Devroye, Donderwinkel, Kerriou and Lugosi [1]: new ver-
tices are attached in a sequential manner one by one by selecting an
existing vertex (called target vertex) in the tree, but instead of connect-
ing to the target vertex by an edge, they connect to one of its neighbors
(or friends), chosen uniformly at random. This model gives rise to dif-
ferent behavior than seen both in the random recursive tree as well as in
the preferential attachment model: the authors show new results on the
number of leaves, on the maximum degree, typical distance and diameter
of such a graph, among others.

5.2 Open problems

It is natural to extend the model considered by [1] with different choices
of choosing the target vertex, and we suggest the following modifications:

Problem 8. A first variation of the model is to choose 0 < p < 1 and
connect the new vertex by an edge to the target vertex with probability p,
and to a uniformly chosen neighbor of the target vertex with probability
1−p. This modification makes it much easier for neighbors of high-degree
vertices to grow their degree, and in particular, the degree of every vertex
goes to infinity almost surely as the tree grows. What can be said about
the number of leaves or the maximum degree of such a model?
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Problem 9. A second variation is the following: after choosing the ran-
dom target vertex, perform a random walk of length k and connect the
new vertex by an edge to the terminal vertex of this random walk. What
can be said about the number of leaves or the maximum degree of such a
model? One could start with k = 2; it is tempting to believe that for even
k the number of leaves is higher, and for odd k the maximum degree is
higher (performing a random walk of infinite length results again in the
preferential attachment model).

Finally, another question in the original model of [1] is the following:

Problem 10. What does the forest induced by the vertices of degree at
most N , for large N , look like? Do these subtrees look like random friend
trees?

Bibliography

[1] L. Addario-Berry, S. Briend, L. Devroye, S. Donderwinkel, C. Ker-
riou, and G. Lugosi. “Random friend trees”. 2024. arXiv: 2403 .
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6 A randomly perturbed Čern’y’s
conjecture

Communicated by Patrick Morris.

Keywords Finite automata, synchronizing words, random perturbations

6.1 Background
The notion of automaton is some important concept in computer science
that I don’t know much about but there is a very famous conjecture (it’s
even on wikipedia) of Čern’y that is pretty combinatorial.
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The simple object is an automaton with n states and two functions
a, b : [n] → [n]. By concatenating the functions, you can apply words
w : [n] → where w is some string of as and bs. For example, the word
w = aab means that you apply b and then a twice. Now the automaton is
said to be synchronizable if there is some word w such that w(i) = w(j)
for all i, j ∈ [n]. Such a word is called a synchronizing word.

The conjecture of Čern’y from 1969 states that every synchronizable
automaton has some synchronizing word of length at most (n−1)2 (which
would be tight due to some simple example). Despite lots of attention,
this conjecture remains wide open with the best known bound being of
order n3.

In some recent work of Guillem/aume [1] investigated random au-
tomata and showed that with high probability they have much shorter
synchronizing words of order n1/2 (ignoring polylogs). The problem I
suggest is to see what happens to the length of a synchronizing word
after randomly perturbing some arbitrary automata.

6.2 Open problems

Problem 11. Given some arbitrary (synchronizable) automata a, b →
[n], what can be said about the length of a synchronizing word after t
random changes? In particular, how many random changes need to be
applied until you can guarantee that Čern’ys conjecture holds for the
outcome.

There is some flexibility here on what is meant by ’random changes’
as you can change just a or both a and b but in either case, the most
natural thing to do I guess is to impose a(x) = y for some randomly
chosen x, y. I expect that doing this already a small number of times
should give some much better control over synchronizing word lengths.

Bibliography
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7 Hamilton cycles in powers of cycles
Communicated by Tássio Naia.

Keywords Hamilton cycle, minimum degree condition

7.1 Background
A long line of research is concerned with minimum degree conditions for
a graph to contain a Hamilton cycle. An important category of problems
in the area deals with high-minimum-degree subgraphs of structured
graphs. This problem is about generalizing Dirac’s well known theorem.

Theorem 12. If G is a graph of order n and minimum degree at least
n/2, then G contains a Hamilton cycle.

We may see the theorem above as saying that, if one takes a complete
graph Kn and a subgraph H ⊆ Kn with a certain minimum degree, then
H is Hamiltonian. The proposed problems are about what happens when
we attempt to generalize Dirac’s theorem by replacing Kn and adjusting
the minimum degree condition.

For any graph G, let Gk denote the k-th power of G (that is to say,
the graph with the same vertex set as G, but where each pair of distinct
vertices u, v is joined by an edge when the distance between u and v in
G is at most k). A Hamilton cycle in a graph G is a path that contains
all vertices of G. Let Cn denote a cycle ion n vertices.

7.2 Open problems
The target direction is the following conjecture.

Conjecture 13 (Espuny-Díaz, Lichev, Wesolek [1]). For all integers
n ≥ 3 and k ∈ [1, n/2], every graph G ⊆ Ck

n with minimum degree at
least k + 1 contains a Hamilton cycle.

A good starting point might be showing that such subgraphs contain
large cycles.
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Problem 14. Show that there exists α > 0 such that, for all large n, k,
every subgraph of Ck

n with minimum degree k + 1 contains a cycle of
length at least αn.

As the conjecture is quite recent, there is a lot of flexibility here. It
might be useful to consider requiring larger minimum degree.

Problem 15. Show that for some ℓ ≥ 1 and sufficiently large k, there
exists α, > 0 such that, for all large n, k, every subgraph of Ck

n with
minimum degree k + ℓ contains a cycle of length at least αn.

Bibliography

[1] Alberto Espuny Díaz, Lyuben Lichev, and Alexandra Wesolek. On
the local resilience of random geometric graphs with respect to con-
nectivity and long cycles. 2024. arXiv: 2406.09921.

8 Three points in parallel line

Communicated by Tássio Naia.

Keywords Plane geometry, points and lines, parallell

8.1 Background
This is a simple-looking problem proposed by Ruzsa at the Additive
Combinatorics and Fourier Analysis Workshop1 (17/jun–21/jun 2024).
There is no clear history about this problem.

Consider a set C of points in R2 not all colinear, that satisfy the fol-
lowing property: for all distinct P, Q ∈ C, there exists at least one line

1https://erdoscenter.renyi.hu/events/additive-combinatorics-and-fourier-analysis-
workshop
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in R2 that contains at least 3 points in C and is parallell to the seg-
ment PQ. We say that such a line satisfies the 3-point parallel property
for the pair {P,Q}.

Two examples of such finite configurations are the following.

• The 7-point collection formed by the vertices of a triangle T , the
midpoints of the sides of T and its baricenter.

• The 11 point collection formed by the intersections of the segments
forming a regular pentagon’s sides and its diagonals, plus the pen-
tagon’s baricenter.

8.2 Open problems
Problem 16. Is there any other configuration of points that works?

What if we relax the condition to requiring only that some (fraction?)
of pairs of points in C admit such a parallel?

Problem 17. Fix an integer ℓ. What finite point collections in R2 are
such that all but at most ℓ pairs of distinct P, Q ∈ C have the 3-point
parallel property.

9 Rainbow path covers
Communicated by Tássio Naia.
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Keywords Rainbow graphs, graph cover, paths, edge-coloring

9.1 Background

In a recent paper [2], it has been shown that most properly edge-colored
graphs can be covered by a linear number of rainbow paths.
Definitions. A properly edge-colored graph contains no monochromatic
path of length 2, and a path is said to be rainbow if no two edges in it
have the same color. A collection P of paths of a graph G is a path cover
if every edge of G appears in some path in P.

Theorem 18. Let G = G(n, p) be the binomial random graph. If p ≫
(log n/n)2, then asymptotically almost surely every proper coloring of G
admits a rainbow path cover.

This is the first progress towards the following conjecture.

Conjecture 19 ([1]). Given a graph G of order n and a proper edge-
coloring of G, there exists a rainbow path cover of G formed by O(n)
paths.

For convenience, let us call a graph G linearly rainbow coverable if G
satisfies conjecture 19.

9.2 Open problems
There at least two clear directions of research for this problem. The first
one is extending the results for other classes of graphs, such as graphs of
large minimum degree, or d-regular graphs where d = d(n) = ω(1) is a
slowly growing function of n.

Problem 20. Find a new class of graphs (such as graphs with large
minimum degree) which is linearly rainbow coverable.

The second avenue is strengthening known results by considering rain-
bow path decompositions.

Problem 21. Find families of graphs G that have the following property:
for each proper edge-coloring of G, there exists a partition of the edges
of G into O

(
|V (G)|

)
rainbow paths.
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There are many further possible variants and strengthenings of this
problem. One may consider almost covers/decompositions, or may allow
edges to be covered up to a certain number times, or allow a few edges
to be missed in P.

Bibliography
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Jozef Skokan. “Separating the edges of a graph by a linear number
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[2] Antônio Kaique, Guilherme Mota, and Tássio Naia. “Cobertura de
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10 Proper conflict-free colourings of
random graphs

Communicated by Guillem Perarnau.

Keywords Colourings, random graphs.

10.1 Background
In recent years there has been interest in proper colourings that have
some additional condition on the number of times a colour appears in
the neighbourhood of each vertex. Examples are frugal or dynamical
colorings, or colorings of a graph power. On the other hand, the no-
tion of conflict-free colouring was introduced by Pach and Tardos [3], in
the context of hypergraphs. The notion admits a natural translation to
graphs: we say that a vertex-colouring is conflict-free if for every vertex
there exists at least one colour that appears exactly once in its neigh-
bourhood. Glebov, Szabó and Tardos [2] studied the evolution of the
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conflict-free chromatic number, that is the minimum number of colours
of a conflict-free colouring, in an Erdős-Rényi random graph G(n, p),
showing that if p ≥ 1/2, then it differs from the dominating number by
at most 3.

10.2 Open problems

Proper conflict-free colourings were introduced by Fabrici et al. [1], and
are proper colourings that are also conflict-free. The question proposed
here is to study the proper conflict-free chromatic number χcf of a ran-
dom graph for any p that is large enough. It is interesting to understand
what is the (exact) value of that number.

Problem 22. For constant p > 1/2, is it true that

χcf =
(
χ(G(n, p))+O(γ(G(n, p))) or χcf =

(
χ(G(n, p))+o(γ(G(n, p))).

Can you give more precise results, such as concentration on a constant
number of points? Understanding better this parameter would give in-
sight on how "random" are proper colourings of a random graph with an
(almost) optimal number of colours.

This problem is motivated by discussions on the topic with Bruce Reed
and Liana Yepremyan.
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11 Locally identifying colouring of
chordal graphs

Communicated by Clément Requilé.

Keywords Locally identifying colourings, chromatic number, chordal
graphs

This problem focuses on vertex-colourings allowing to distinguish the
vertices of a graph. Let N [u] denote the closed neighbourhood of a vertex
u in a graph. A locally identifying colouring, or lid-colouring, of a graph
is a proper colouring c such that, for any edge uv if N [u] ̸= N [v] then
c(N [u]) ̸= c(N [v]). The lid-chromatic number χlid(G) of a graph G is
the minimum number of colours used in a lid-colouring of G.

In [1] the authors study the parameter the lid-chromatic number for
different families of graphs, and made some conjectures several of which
have been solved.

One remains however unsolved, and concerns chordal graphs. A graph
is said to be chordal if it admits no induced cycle of length four or greater.

Problem 23. For any chordal graph G, χlid(G) ≤ 2χ(G).
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12 Modular number of perfect
matchings in random regular
bipartite graphs

Communicated by Clément Requilé.

Keywords perfect matchings, random graphs

The following problem was conjectured by Louis Esperet in [1] and is
motivated by an extension of the Berge-Sauer conjecture, which stated
that every 4-regular graph contains a 3-regular subgraph and was proved
by Tashkinov in the 80s.

Problem 24. For any integer q ≥ 3 there is a real ε > 0 such that for
any i ∈ {0, 1, . . . , q − 1} and n sufficiently large, the number of perfect
matchings modulo q of an n-vertex random q-regular bipartite graph is
equal to i with probability at least ε.

The problem can and perhaps should also be studied for multigraphs.
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13 Revisting the asymptotic
enumeration of lattices

Communicated by Juanjo Rué.

Keywords lattices, asymptotic enumeration, hypergraph containers
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13.1 Background
Nowadays the technique of hypergraph containers is a well established
method in extremal combinatorics. Its origins go back to the celebrated
paper due to Kleitman and Winston ‘’On the number of graphs without
4-cycles” (published in Discrete Mathematics in 1980), where the authors
get bounds for the number of labelled graphs on [n] vertices without
cycles of length 4 as subgraphs.

However, in the same year there is a paper (due to the same authors)
where there appear also some of these seminal ideas. In the paper "The
asymptotic number of lattices" (published in Annals of Combinatorics in
1980) the authors prove the following: let us denote by L(n) the number
of lattices over n + 2 elements. Kleitman and Winston, by applying a
convenient algorithm, obtained the upper bound

L(n) ≤ αn3/2+o(n3/2), α ≈ 6.1134.

This bound is obtained by reducing the problem to obtaining good upper
bounds for lattices with exactly 4 levels on n+2 points, which we denote
by S(n). More precisely, the authors obtain that

S(n) < βn
3/2+o(n3/2), β ≈ 1.6994.

This problem is strongly related to the study of the number of 4-cycle
free graphs: for a 4-level lattice it is not possible to have 4-cycles defined
pairs of pairs of elements between the middle levels.

13.2 Open problems

Problem 25. Rediscover the bound for S(n) (maybe with an slightly
worse constant) by using the modern approach to graph containers. In
order to do so, the best is to follow the argument developed by Samotij
in [2].

Once this problem is solved, I also propose the following new improve-
ment:
Problem 26. Improve the constant β (and consequently α). In order
to do that, one needs to understand the improvement on the constant
in the case of graphs without 4-cycles due to Balogh and Wagner in [1]
(available in Jozsi Balogh’s webpage).
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14 Planar point set configurations

Communicated by Oriol Serra.

Keywords finite plane geometry, configurations of points and lines

14.1 Background
This is a simple striking problem posed by Imre Ruzsa at the Workshop
on Additive and Analytic Combinatorics held in Budapest in June 2024.

The following two examples are sets of points in the plane with the
property that, for every two points there is a line parallel to the one
defined by them which contains at least three points of the set.
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14.2 Open problems
The problem is simple:

Problem 27. Let P be a finite set of points in the plane not all in
a line with the property that, for every two points x, y ∈ P there is a
line parallel to the line xy which contains three points of P . Are there
additional examples besides the ones depicted in the figure? An infinite
family?

15 Long arithmetic progressions in A−A

Communicated by Oriol Serra.

15.1 Background
Let A be a set of integers. It is an old question to determine the maxi-
mum length of an arithmetic progression contained in sumsets of A. If
|A+A| < 3|A|−4 then it is known that A+A contains an arithmetic pro-
gression of length at least 2|A| − 1. Szemerédi and Vu [Long arithmetic
progressions in sumsets: thresholds and bounds. J. Amer. Math. Soc.19
(2006), no.1, 119–169] show that, for any set A, the iterated sumset lA
contains an arithmetic progression of length cl|A| whenever |A| ≥ Cn/l,
for some constants c and C.

15.2 Open problems
Illya Shkredov asks the following striking questions:

Problem 28. Is it true that there is an absolute constant c such that, for
every set of integers A, the difference set A − A contains an arithmetic
progression of length c|A|? If true, is this constant c ≥ 1/2? Is there
some absolute constant l suc that lA− lA contains an arithmetic progres-
sion of length |A|/2? Is it true that the longest arithmetic progression P
in A−A is symmetric, P = −P?
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From all these questions perhaps the one about the longest arithmetic
progression being symmetric is the easiest oune and the answer is most
likely yes. As for the other ones, some computer experiments seem to
confirm that answer might be positive for all of them.

16 New strictly Neumaier graphs

Communicated by Robin Simoens.

Keywords Latin square, Neumaier graph

16.1 Background

Definition 1. A graph is edge-regular if there is a constant λ such that
every two adjacent vertices have λ common neighbours.

A graph is co-edge-regular if there is a constant µ such that every two
nonadjacent vertices have µ common neighbours.

A graph is strongly regular if it is regular, edge-regular and co-edge-
regular.

A regular clique is a clique for which there is a constant e such that
every vertex outside the clique has exactly e neighbours in the clique.

Definition 2. A Neumaier graph is a regular, edge-regular graph with a
regular clique.

A strictly Neumaier graph is a Neumaier graph that is not strongly
regular.

People are interested in constructions of strictly Neumaier graphs and
their possible parameters.

16.2 Open problems

In Section 4 of [1], a strictly Neumaier graph with parameters (25, 12, 5; 2, 5)
was constructed using a Latin square of order 5.

Problem 29. Can we construct strictly Neumaier graphs using Latin
squares of order at least 6?
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17 Dirac’s theorem within powers of
cycles

Communicated by Robin Simoens.

Keywords Hamiltonian graph, graph power

17.1 Background
Source of the problem: Ramon Llull prize talk of Alberto during the
DMD2024.

17.2 Open problems

Conjecture 30. If H ⊆ Ck
n with δ(H) ≥ k+1, then H is Hamiltonian.

Here, Ck
n denotes the k-th power of the n-cycle and δ(H) is the mini-

mum degree of H.

Problem 31. Solve the conjecture for as many values of k.

18 A Stable Sensitivity Conjecture
Communicated by Christoph Spiegel.
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Keywords Extremal graph theory, Boolean Functions, Fourier analysis

18.1 Background
We are interested in the relation of different complexity measures of a
given boolean function f : {−1, 1}n → {−1, 1}. Given x ∈ {−1, 1}n and
B ⊆ [n], let xB denote the vector denoted by flipping all bits in B.

• Its sensitivity denotes the maximum number of bits that can be
flipped while changing the output, that is

s(f) = max
x

|{i | f(x) ̸= f(x{i})}|.

• Its block sensitivity denotes the maximum number of disjoint blocks
B1, . . . , Bt that can be flipped while changing the output, that is

bs(f) = max
x

max{t | ∃B1, . . . , Bt ⊂ [n] s.t. f(x) ̸= f(xBi)}.

• Its degree is defined as the degree of its unique polynomial expres-
sion in which each variable has degree at most 1. Equivalently, it
is the cardinality of the largest I ⊆ [n] for which the Fourier trans-
form f̂(I) w.r.t. the polynomial basis given by

∏
i∈I xi is non-zero,

that is
deg(f) = max

I
{|I| | f̂(I) ̸= 0}.

.

Clearly bs(f) ≥ s(f) and the Sensitivity Conjecture stated that bs(f) ≤
s(f)C for some C > 0. Since the block sensitivity was already known to
be polynomially upper bounded by the degree, it was sufficient to show
that the degree is polynomially upper bounded by the sensitivity.

Gotsman and Linial [2] showed that establishing h(deg(f)) ≤ s(f) for
any monotonous function h is equivalent to showing that any subset S
of the vertices of the n-dimensional hypercube of size at least |S| > 2n−1

induces a subgraph with maximum degree at least h(n). This was proven
by Huang [3] in 2019 for h(x) =

√
x. Knuth [4] later gave a slightly

simplified proof.
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18.2 Open problems

Huang’s result is tight, as shown by Chung, Füredi, and Graham [1],
who constructed a family of sets of size 2n−1 + 1 with maximum degree
strictly less than

√
n+ 1.

Problem 32. Can we establish some form of stability or exactness result
in Huang’s proof of the Sensitivity Conjecture w.r.t. to the family of sets
introduced by Chung, Füredi, and Graham? Alternatively, can we extend
the set of families for attaining that bound?
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19 Crossing numbers of flip sequences

Communicated by Alexandra Wesolek.

Keywords Flip graphs, non-crossing trees
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19.1 Background
Let C be a set of n points in the plane in convex position. A spanning
tree T on C is non-crossing if every pair of edges of T (represented by the
straight line interval between their endpoints) are pairwise non-crossing.
A flip on a non-crossing tree T consists of removing an edge e from
T and adding another edge f so that the resulting graph (T ∪ f) \ e
is also a non-crossing spanning tree. A flip sequence is a sequence of
non-crossing spanning trees such that consecutive spanning trees in the
sequence differ by exactly one flip. Recently, there has been much interest
in finding flip sequences of small length. Optimally one would like to

T ′ T ′′

Figure 19.1: Two non-crossing spanning trees between which a flip se-
quence is long.

find a flip sequence of length |E(T ′) \ E(T ′′)| between any two trees
T ′, T ′′. However, this is not always possible, as Hernando et al. showed
in 1999 [2]. One needs 3

2n − 5 flips for the trees in Figure 19.1 as any
of the non-common edges in T ′ is crossed by n

2 − 1 edges of T ′′ (and
vice versa). Very recent progress showed that one can always find a flip-
sequence between two trees of length 5

3n (Kleist et al., on the arXiv this
week).

19.2 Open problems
I propose a twist on the problem. A matroid flip on a tree T consists
of removing an edge e from T and adding another edge f so that the
resulting graph (T ∪ f) \ e is a tree (so as before, just dropping the
non-crossing condition on the trees). For a spanning tree T on C we
denote cr(T ) as the number of edge crossings in the tree T . Given
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two non-crossing trees T ′, T ′′ we would like to find a (matroid) flip-
sequence T ′ = T1, T2, . . . , Tk = T ′′ with k = |E(T ′) \ E(T ′′)| such that
maxi∈[k] cr(Ti) is minimized. We denote the minimum as cr(T ′, T ′′).

Problem 33. For any two non-crossing trees T ′, T ′′, how large can
cr(T ′, T ′′) be?

I would suggest to start by analyzing the trees in Figure 19.1.

A related but quite different problem I would like to propose is on
random flips and mixing times.

Problem 34. What is the mixing time for the flip walk of non-crossing
spanning trees on C?

The same question has been studied for the flip walk for triangulations
on C. Similarly as before, a flip on a triangulation R of C consists of
removing an edge e from R and adding another edge f so that the result-
ing graph (R ∪ f) \ e is a triangulation of C. Eppstein and Frishberg [1]
recently improved the upper bound on the mixing time for triangulations
for the first time in 25 years from an O(n5 log n) given by McShine and
Tetali [3] to O(n3 log3(n)). To my knowledge, not much is known for the
flip walk on non-crossing trees, and I think it would be nice to find some
polynomial upper bound on the mixing time. In fact, the first polyno-
mial upper bound on the mixing time for the triangulation flip walk was
O(n25) given by Molloy, Reed and Steiger [4] and as a first step we could
aim for a similar bound.
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